Abstract

Hydroxyl-enriched materials are promising boron adsorbents. However, the use of these materials is hampered by issues of separation, recovery, and selectivity, notably due to the presence of interfering ions. Therefore, we synthesized here a cheap magnetic nanopowder, which was further functionalized with polyvinyl alcohol and glycidol to produce boron-selective adsorbents. We studied their selectivity and removal efficiency using batch and fixed-bed systems. Sorption was studied at both concentrated and trace amounts of boron. Results show that nanopowders have 5.3–6.5 nm pore sizes and 145–203 m2/g surface areas, using Brunauer–Emmett–Teller analysis. Polyvinyl alcohol-functionalized particles removed 93 % of boron at 5 mg/L at pH 7 in 30 min, whereas only 68 % of boron was removed by glycidol-functionalized particles. However, at higher boron concentration, of 50 mg/L, glycidol-functionalized particles showed higher adsorption affinity of 68.9 mg/g. We conclude that internal hydroxyl groups of polyvinyl alcohol-functionalized particles are less accessible at higher boron concentration. This is the first report on magnesium ferrites for boron recovery. The spent adsorbents were separated easily from the aqueous media by an external magnet and repeatedly used. Overall, our findings demonstrated that the hydroxyl-enriched magnetic nanopowders are a better alternative to the existing boron adsorbents regarding magnetic separation, reusability, and selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.