Abstract

The evaluation of skeletal fragility in Cushing's syndrome (CS) is a clinical challenge, since dual-energy X-ray absorptiometry (DXA) does not capture abnormalities in bone microstructure induced by glucocorticoid excess. Hypercortisolism was shown to increase bone marrow adiposity, but it is still unknown whether high bone marrow fat (BMF) as measured by vertebral magnetic resonance spectroscopy may predict fracture risk in this clinical setting. In this cross-sectional study, we evaluated the association between BMF and vertebral fractures (VFs) in patients with CS. Twenty patients (5 M, age 44 ± 13 years) with active CS were evaluated for morphometric VFs, lumbar spine BMF, and bone mineral density (BMD). Fifteen healthy volunteers (4 M, age 43 ± 12 years) acted as control group for BMF evaluation. BMF was significantly higher in CS patients vs. controls (52.0% vs. 27.0%, p < 0.01), and was directly correlated with patients' age (p = 0.03), 24-hours urine-free cortisol (p = 0.03), midnight serum cortisol (p = 0.02), and serum CTX (p = 0.01). Patients with VFs (13 cases) showed significantly higher BMF vs. patients without VFs (65.0% vs. 24.0%, p = 0.03). Fractured patients with either normal BMD or osteopenia showed comparable BMF to fractured patients with either osteoporosis or low BMD for age (p = 0.71). When the analysis was restricted to patients with normal BMD or osteopenia, VFs were still significantly associated with higher BMF (p = 0.05). This study provides a first evidence that vertebral adiposity may be a marker of hypercortisolism-induced skeletal fragility and measurement of spine BMF could have a role in the diagnostic work-up for the assessment of fracture risk in CS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call