Abstract

The optimization of key simultaneous saccharification and fermentation (SSF) parameters for bioethanol production from phosphoric acid plus hydrogen peroxide pretreated paper mulberry wood was carried out under two isothermal scenarios; the yeast optimum and trade-off temperatures of 35 and 38 °C, respectively. The optimal conditions established for SSF at 35 °C (solid loading: 16%; enzyme dosage: 9.8 mg protein/g glucan; and yeast concentration: 6.5 g/L) achieved high ethanol titer and yield of 77.34 g/L and 84.60% (0.432 g/g), respectively. These corresponded to 1.2 and 1.3-folds increases, compared to the results of the optimal SSF at a relatively higher temperature of 38 °C. The information from this study would prove beneficial in reducing process energy demands to some extent, while also helping to achieve high levels of both ethanol concentration and yield that are desired in cellulosic ethanol production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.