Abstract

High beam quality 588 nm radiation was realized based on a frequency-doubled crystalline Raman laser. The bonding crystal of YVO4/Nd:YVO4/YVO4 was used as the laser gain medium, which can accelerate the thermal diffusion. The intracavity Raman conversion and the second harmonic generation were realized by a YVO4 crystal and an LBO crystal, respectively. Under an incident pump power of 49.2 W and a pulse repetition frequency of 50 kHz, the 588 nm power of 2.85 W was obtained with a pulse duration of 3 ns, corresponding to a diode-to-yellow laser conversion efficiency of 5.75% and a slope efficiency of 7.6%. Meanwhile, a single pulse's pulse energy and peak power were 57 µJ and 19 kW, respectively. The severe thermal effects of the self-Raman structure were overcome in the V-shaped cavity, which has excellent mode matching, and combined with the self-cleaning effect of `Raman scattering, the beam quality factor M2 was effectively improved, which was measured optimally to be Mx 2 = 1.207, and My 2 = 1.200, with the incident pump power being 49.2 W.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call