Abstract

We report on the formation of high-barrier Ti and Ni contacts to (NH4)2Sx-treated ZnO films grown by pulsed-laser deposition. The x-ray photoelectron spectroscopy (XPS) results show that the position of the Zn 3d core-level peak at the (NH4)2Sx-treated ZnO surface is the same as that at the Ti/(NH4)2Sx-treated ZnO or Ni/(NH4)2Sx-treated ZnO interfaces, suggesting the occurrence of Fermi-level (EF) pinning and the formation of a barrier height of ∼2.7 eV. From the photoluminescence and XPS measurements, it is suggested that a high Zn-vacancy density might cause the ZnO EF to be pinned close to the Zn-vacancy defect level at approximately 0.7 eV above the valence band maximum. In addition, the discrepancy in barrier-height values obtained from XPS and current–voltage measurements suggests the formation of S–Zn surface dipoles with S atoms on the surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.