Abstract

Al 0.38Ga 0.62N/GaN heterojunction solar-blind Schottky photodetectors with low dark current, high responsivity, and fast pulse response were demonstrated. A five-step microwave compatible fabrication process was utilized to fabricate the devices. The solar-blind detectors displayed extremely low dark current values: 30 μm diameter devices exhibited leakage current below 3 fA under reverse bias up to 12 V. True solar-blind operation was ensured with a sharp cut-off around 266 nm. Peak responsivity of 147 mA/W was measured at 256 nm under 20 V reverse bias. A visible rejection more than 4 orders of magnitude was achieved. The thermally-limited detectivity of the devices was calculated as 1.8 × 10 13 cm Hz 1/2 W −1. Temporal pulse response measurements of the solar-blind detectors resulted in fast pulses with high 3-dB bandwidths. The best devices had 53 ps pulse-width and 4.1 GHz bandwidth. A bandwidth-efficiency product of 2.9 GHz was achieved with the AlGaN Schottky photodiodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call