Abstract

An integrated control strategy for piezo-actuated nanopositioning stages is proposed in this paper. The aim is to achieve high-speed and high-precision tracking control of nanopositioning stages. For this purpose, a direct inverse compensation method is firstly applied to eliminate the hysteresis nonlinearity without involving inverse model calculation. Then, an inside-the-loop input shaper is designed to suppress the vibration of the compensated system. A Smith predictor is introduced to prevent the potential closed-loop instability caused by the time delay of the inside-the-loop input shaper. Finally, a high-gain feedback controller is employed to handle the disturbances and modeling errors. To demonstrate the effectiveness of the proposed control method, comparative experiments are carried out on a piezoelectric actuated stage. The results show that the proposed control approach increases the tracking bandwidth of the stage from 22.6Hz to 510Hz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call