Abstract

Micro-light-emitting diodes (micro-LEDs) with high modulation rates and low power consumption could attract growing attention as visible light communication (VLC) technology advances. The designed and fabricated semi-polar micro-LEDs have achieved high bandwidth at low current injection due to the reduced quantum-confined Stark effect (QCSE), which was significantly greater than that of typical c-plane at the same current injection. Semi-polar green micro-LEDs got a −3 dB bandwidth that surpasses 500 MHz and 1 GHz at low current densities of 43.8 A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and 120.6 A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , while blue micro-LEDs exceed 500 MHz at low current densities of 76.6 A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , respectively. Additionally, the free space VLC system has shown semi-polar blue and green micro-LED transmission data rates of 3.495 Gbps (433 A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) and 3.483 Gbps (402 A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) respectively. Semi-polar micro-LEDs, which can achieve low power consumption and high bandwidth, are anticipated to play a significant role in the development of energy-efficient VLC in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call