Abstract

The authors present a germanium on silicon p-i-n photodiode for vertical light incidence. For a Ge p-i-n photodetector with a radius of 5μm a 3dB bandwidth of 25GHz is measured at an incident wavelength of 1.55μm and zero external bias. For a modest reverse bias of 2V, the 3dB bandwidth increases to 39GHz. The monolithically integrated devices are grown on Si with solid source molecular beam epitaxy. The complete detector structure consisting of a highly p-doped Ge buried layer, an intrinsic absorption region, and a highly n-doped top contact layer of Ge∕Si is grown in one continuous epitaxial run. A low growth temperature sequence was needed to obtain abrupt doping transitions between the highly doped regions surrounding the intrinsic layer. A theoretical consideration of the 3dB bandwidth of the Ge detector was used to optimize the layer structure. For a photodiode with 5μm mesa radius the maximum theoretical 3dB frequency is 62GHz with an intrinsic region thickness of 307nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.