Abstract

We have developed a novel chemical sensing technique termed high asymmetric longitudinal field ion mobility spectrometry (HALF-IMS), which allows separation of ions based on mobility differences in high and low electric fields. Our device is microfabricated, has a miniature format, and uses exceptionally low power due to the lack of RF separation fields normally associated with ion mobility spectrometry (IMS) or differential mobility spectrometry (DMS). It operates at room temperature and atmospheric pressure. This HALF-IMS chip contains a microscale drift cell where spatially varying electric field regions of high and low strengths are generated by direct current (DC) applied to the electrodes that are physically placed to cause ionic separation as the ionized chemical flows along the drift cell. Power and complexity are reduced at the chip and system levels by reducing the voltage magnitude and using DC-powered electronics. A testing platform utilizing an ultraviolet (UV) photoionization source was used with custom electronic circuit boards to interface with the chip and provide data inputs and outputs. Precise control of the electrode voltages allowed filtering of the passage of the ion of interest through the drift cell, and ionic current was measured at the detector. The device was tested by scanning of electrode voltages and obtaining ion peaks for methyl salicylate, naphthalene, benzene, and 2-butanone. The current experimental setup was capable of detecting as low as ∼80 ppb of methyl salicylate and naphthalene. The use of benzene as a dopant with 2-butanone allowed one to see two ion peaks, corresponding to benzene and 2-butanone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call