Abstract

One great challenge in the development of noble metal nanoparticles (NPs)/carbon nanotubes nanohybrids as fuel cells electrocatalyst is to explore rationally functionalizing CNTs method for dispersion and stability of noble metal NPs catalysts with better electrocatalytic performance. Here we report a facile strategy to fabricate a carboxymethyl chitosan functionalized CNTs (CMC-CNTs) and demonstrate its application as a promising catalyst support material for direct methanol fuel cells. The developed route rationally utilizes the excellent water-solubility and abundant carboxyl (–COOH) functional groups of the CMC-CNTs as a superior supporting material for growing and supporting PtRu NPs. For methanol electrooxidation, the as-prepared PtRu NPs/CMC-CNTs nanohybrid has extremely large electrochemically active surface area (ESA) and exhibits better electrocatalytic activity and stability than PtRu NPs/CNTs catalyst. This provides a facile approach to synthesize CNTs-based nanoelectrocatalysts for high performance energy conversion devices in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.