Abstract

We present a model for the evolution of paired bases in RNA sequences. The new model allows for the instantaneous rate of substitution of both members of a base pair in a compensatory substitution (e.g., A-U-->G-C) and expands our previous work by allowing for unpaired bases or noncanonical pairs. We implemented the model with distance and maximum likelihood methods to estimate the rates of simultaneous substitution of both bases, alphad, vs. rates of substitution of individual bases, alphas in rRNA. In the rapidly evolving D2 expansion segments of Drosophila large subunit rRNA, we estimate a low ratio of alphad/alphas, indicating that most compensatory substitutions involve a G-U intermediate. In contrast, we find a surprisingly high ratio of alphad/alphas in the core small subunit rRNA, indicating that the evolution of the slowly evolving rRNA sequences is modeled much more accurately if simultaneous substitution of both members of a base pair is allowed to occur approximately as often as substitution of individual bases. Using simulations, we have ruled out several potential sources of error in the estimation of alphad/alphas. We conclude that in the core rRNA sequences compensatory substitutions can be fixed so rapidly as to appear to be instantaneous.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.