Abstract
A formation process for long chains of quantum dots during the molecular-beam epitaxial growth of (In,Ga)As∕GaAs(100) multilayers is presented. The morphology evolution monitored by atomic force microscopy for a series of (In,Ga)As layers demonstrates that the highly anisotropic lateral alignment of dots is gradually developed as the result of the strain field interaction mediated by the GaAs spacer coupled with the anisotropic surface kinetics that occurs during capping the dots. The dot-chain structure, providing unique properties of its own, is demonstrated to serve as a template for the spatially controlled growth of strained quantum dots in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.