Abstract

ObjectiveUsing magnetic resonance (MR) high angular resolution diffusion imaging (HARDI), we aimed at revealing possible microstructural alterations in the early stage of amyotrophic lateral sclerosis (ALS), still not completely elucidated. MethodsWe studied 22 patients with ALS, in stages 1 or 2 according to the King's staging system, compared to 18 healthy controls (HCs). Statistical mapping of HARDI-derived parameters and tractography measures were performed using the Q-ball imaging diffusion data model. ResultsWhen compared to HCs, the ALS group showed a highly significant decrease of generalized fractional anisotropy (GFA) and fiber length and density in the corticospinal tracts (CSTs) and in the corpus callosum (CC) (p<0.05, corrected level of significance). Moreover, stratifying the ALS population considering the disease phenotype, larger areas of decreased GFA were found in patients with bulbar phenotype compared to those with classic phenotype in several bilateral associative fiber tracts, such as superior and inferior longitudinal, inferior fronto-occipital and uncinate fasciculi. ConclusionsOur whole-brain HARDI results provided preliminary evidence of an early pattern of microstructural degeneration in ALS, mainly involving the CSTs and the CC, although divergent patterns of microstructural abnormalites could be related to different disease phenotypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call