Abstract

Previously, we demonstrated in vivo that the nature of the alterations in sarcoplasmic reticulum (SR) function and SR Ca2+ regulatory proteins depends both on the type of mechanical overload imposed and on the duration of the heart disorder. The purpose of the present study was to determine in vitro whether an extrinsic mechanical overload (in the form of high ambient pressure) would cause an up-regulation of ryanodine receptor (RyR) and Ca2+-ATPase, as we previously reported mildly pressure-overloaded, hypertrophied rat hearts. Primary cultures of neonatal rat cardiomyocytes were prepared and high ambient pressure was produced using an incubator and pressure-overloading apparatus. Cells were exposed to one of two conditions for 72 h: atmospheric pressure conditions (APC) or high pressure conditions (HPC; HPC=APC+200 mmHg). The expression levels of RyR and Ca2+-ATPase were quantified and functional characteristics were monitored. The cell area was significantly greater under HPC. After 6 h exposure, the physiological properties of cardiomyocytes were impaired, but they returned to the baseline level within 24 h. After 24 h exposure, the expression level of RyR was significantly higher under HPC, and for Ca2+-ATPase, the expression level was significantly higher under HPC after 6 h exposure. HPC caused hypertrophy and up-regulated the expression of Ca2+ regulatory proteins and their genes. We suggest that this in vitro pressure-overloading model may prove useful, as is a stretch-overloading model, for investigation of the intracellular Ca2+ regulatory pathways responsible for the development of cardiac hypertrophy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.