Abstract
To understand the pathophysiology of high-altitude pulmonary edema (HAPE), we examined the pathway of adaptation to high altitude in lifelong of Tibet. The Tibetan natives had higher exercise performance, but lower maximal oxygen uptake and lower blood lactate concentrations than did acclimatized Han newcomers. Clinical and basic studies done to determine the pathophysiologic characteristics of 47 patients with HAPE and of subjects susceptible to HAPE. The altitude of onset was 2,680 m to 3,190 m above sea level. Results of hemodynamic studies and the presence of protein-rich edema fluid indicated that HAPE is noncardiogenic and is a type of increased permeability edema. The levels of IL-1 beta, IL-6, IL-8, and TNF-alpha in bronchoalveolar lavage fluid from subjects with HAPE were high on admission. The subjects susceptible to HAPE had much greater increases in an index of pulmonary vascular resistance than did the controls, which resulted in much higher levels of pulmonary arterial pressure during both acute hypoxia and hypobaria. The subjects susceptible to HAPE also has blunted hypoxic ventilatory drives. We studied whether human leukocyte antigen DR-6 functions as a genetic predisposition to HAPE. The frequency of DR-6 was increased in the subjects susceptible to HAPE, which suggests that they have a constitutional abnormality in the pulmonary circulatory, and ventilatory responses to hypoxia and hypobaria, and that genetic factors may be involved in the development of HAPE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.