Abstract

Numerous mammalian species have adapted to the chronic hypoxia of high altitude. Recent genomic studies have identified evidence for natural selection of genes and associated genetic changes in these species. A major gap in our knowledge is an understanding of the functional significance, if any, of these changes. Deer mice (Peromyscus maniculatus) live at both low and high altitudes in North America, providing an opportunity to identify functionally important genetic changes. High-altitude deer mice show evidence of natural selection on the Epas1 gene, which encodes for hypoxia-inducible factor-2α (Hif-2α), a central transcription factor of the hypoxia-inducible factor pathway. An SNP encoding for a T755M change in the Hif-2α protein is highly enriched in high-altitude deer mice, but its functional significance is unknown. Here, using coimmunoprecipitation and transcriptional activity assays, we show that the T755M mutation produces a defect in the interaction of Hif-2α with the transcriptional coactivator CREB-binding protein. This results in a loss of function because of decreased transcriptional activity. Intriguingly, the effect of this mutation depends on the amino acid context. Interchanges between methionine and threonine at the corresponding position in house mouse (Mus musculus) Hif-2α are without effects on CREB-binding protein binding. Furthermore, transfer of a set of deer mouse–specific Hif-2α amino acids to house mouse Hif-2α is sufficient to confer sensitivity of house mouse Hif-2α to the T755M substitution. These findings provide insight into high-altitude adaptation in deer mice and evolution at the Epas1 locus.

Highlights

  • The chronic hypoxia of high altitude presents a substantial challenge to metazoans residing in this environment

  • The oxygen-dependent degradation (ODD) domain of hypoxia-inducible factor-2α (Hif-2α) interacts with two proteins— Phd2 when not hydroxylated, and Vhl when hydroxylated

  • We do not see any appreciable differences in the interaction of Phd2 with WT and T755M deer mouse Hif-2α (Fig. 1, B and C)

Read more

Summary

Introduction

The chronic hypoxia of high altitude presents a substantial challenge to metazoans residing in this environment. We provide evidence that high-altitude deer mouse Hif-2α is a loss of function allele that produces a defect in the interaction of Hif-2α with Cbp. This provides a framework for understanding high-altitude adaptation in deer mice and shows a naturally occurring mutation in a mammalian Epas1 gene that affects the function of the CTAD of Hif-2α.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call