Abstract

The association between type 2 diabetes mellitus and prostate cancer is still under investigation, and the relationship between hyperinsulinemia and prostate cancer stem-like cells (CSCs) is elusive. Here, we investigated the function of insulin/AKT signaling in prostate CSCs. We isolated prostate CSCs as aldehyde dehydrogenase 1-high (ALDH1high) cells from the human prostate cancer 22Rv1 cell line using an ALDEFLUOR assay and established several ALDH1high and ALDH1low clones. ALDH1high clones showed high ALDH1 expression which is a putative CSC marker; however, they showed heterogeneity regarding tumorigenicity and resistance to radiation and chemotherapy. Interestingly, all ALDH1high clones showed lower phosphorylated AKT (Ser473) (pAKT) levels than the ALDH1low clones. PI3K/AKT signaling is a key cell survival pathway and we analyzed radiation resistance under AKT signaling activation by insulin. Insulin increased pAKT levels in ALDH1high and ALDH1low cells; the fold increase rate of pAKT was higher in ALDH1high cells than in ALDH1low cells. Insulin induced resistance to radiation and chemotherapy in ALDH1high cells, and the increased levels of pAKT induced by insulin were significantly related to radiation resistance. These results suggest that ALDH1 suppresses baseline pAKT levels, but AKT can be activated by insulin, leading to treatment resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.