Abstract

The purpose of this study was to investigate the level of agreement between laboratory-based estimates of critical power (CP) and results taken from a novel field test. Subjects were fourteen trained cyclists (age 40±7 yrs; body mass 70.2±6.5 kg; VO2max 3.8±0.5 L · min-1). Laboratory-based CP was estimated from 3 constant work-rate tests at 80%, 100% and 105% of maximal aerobic power (MAP). Field-based CP was estimated from 3 all-out tests performed on an outdoor velodrome over fixed durations of 3, 7 and 12 min. Using the linear work limit (Wlim) vs. time limit (Tlim) relation for the estimation of CP1 values and the inverse time (1/t) vs. power (P) models for the estimation of CP2 values, field-based CP1 and CP2 values did not significantly differ from laboratory-based values (234±24.4 W vs. 234±25.5 W (CP1); P<0.001; limits of agreement [LOA], -10.98-10.8 W and 236±29.1 W vs. 235±24.1 W (CP2); P<0.001; [LOA], -13.88-17.3 W. Mean prediction errors for laboratory and field estimates were 2.2% (CP) and 27% (W'). Data suggest that employing all-out field tests lasting 3, 7 and 12 min has potential utility in the estimation of CP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call