Abstract

Human Enterovirus 71 (EV71) is an emerging pathogen of infectious disease and a serious threat to public health. Currently, there are no antivirals or vaccines to slow down or prevent EV71 infections, thus underscoring the urgency to better understand mechanisms of host-enterovirus interactions. EV71 uses a type I internal ribosome entry site (IRES) to recruit the 40S ribosomal subunit via a pathway that requires the cytoplasmic localization of hnRNP A1, which acts as an IRES trans-activating factor. The mechanism of how hnRNP A1 trans activates EV71 RNA translation is unknown, however. Here, we report that the UP1 domain of hnRNP A1 interacts specifically with stem loop II (SLII) of the IRES, via a thermodynamically well-defined biphasic transition that involves conserved bulge 5′-AYAGY-3′ and hairpin 5′-RY(U/A)CCA-3′ loops. Calorimetric titrations of wild-type and mutant SLII constructs reveal these structural elements are essential to form a high-affinity UP1-SLII complex. Mutations that alter the bulge and hairpin primary or secondary structures abrogate the biphasic transition and destabilize the complex. Notably, mutations within the bulge that destabilize the complex correlate with a large reduction in IRES-dependent translational activity and impair EV71 replication. Taken together, this study shows that a conserved SLII structure is necessary to form a functional hnRNP A1-IRES complex, suggesting that small molecules that target this stem loop may have novel antiviral properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.