Abstract

Peptide ligands that disrupt MAPK pathways are of great interest for a better understanding of these signalling cascades and represent therefore an attractive target to control cell degenerative processes. In that context, selective disruption of the upstream Grb2/Sos complex in the Ras/MAPK cascade has focused extensive work. The Sos PPII decapeptide, which interacts with the Grb2-SH3 domains, has been modified in various positions and the best inhibitors designed so far are either dimeric ligands or peptoid analogues of the VPPPVPPRRR sequence. We report the synthesis of new Grb2 ligands in which the key Val5 residue has been replaced by a cis C β-substituted proline. Both fluorescence and ITC assays have been employed to measure the affinity of these substituted peptides for a recombinant Grb2 protein. Whereas proline in position 5 completely abolished the binding potency, a cis C β-methyl-L-proline restored the affinity. Other cis C β-proline substituents led to a complete loss of binding potency. Combining the best modifications: a cis C β-methylproline 5, N-acetylation, C-carboxamide and dimerization yielded a 560-fold affinity enhancement compared to the wild-type VPPPVPPRRR sequence. This study shows that C β-substituted prolines may constitute a new alternative for PPII ligands, combining entropy and enthalpy beneficial effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.