Abstract

Spinal cord-myotube cultures prepared with dissociated embryonic chick spinal cord cells and myoblasts exhibit a high affinity mechanism for accumulating choline. The uptake mechanism has a K m of 3.4 ± 0.5 μ M (7) and a V m of 40.0 ± 0.1 (7) pmoles/min/mg of protein (mean ± SEM; number of determinations in parentheses). It is inhibited 90–95% by 10 μ M hemicholinium-3 or by replacement of Na + in the incubation solution with Li +. Part of the choline (10–20%) accumulated by the high affinity system is converted to acetylcholine (ACh). Uptake studies on spinal cord cells and myotubes grown separately demonstrate that the spinal cord cells can account for virtually all of the choline uptake observed in the mixed cultures. Myotubes are unnecessary under these conditions for the expression of the high affinity uptake mechanism by spinal cord cells. Neurons are not the only cell type in culture to exhibit high affinity choline uptake. Chick fibroblasts in both rapidly growing and stationary phase can accumulate choline with kinetics similar to those observed for the high affinity uptake by spinal cord cells. Little if any of the choline accumulated by fibroblasts, however, is converted to ACh. In most uptake studies with spinal cord cells, contributions from fibroblasts were minimized by carrying out the analysis at a time when few non-neuronal cells were present in the spinal cord cultures. These observations suggest that a population of chick central nervous system (CNS) neurons develop a high affinity choline uptake mechanism in cell culture that has many of the properties described for uptake by cholinergic neurons in vivo and that at least part of the choline accumulated by the system can be used for neurotransmitter synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.