Abstract

Fluorescence spectrum of camel lens ζ-crystallin, a major protein in the lens of camelids and histicomorph rodents, showed maximum emission at 315 nm. This emission maximum is blue shifted compared to most proteins, including α-crystallin, and appeared to be due to tryptophan in highly hydrophobic environment. Interaction of NADPH with ζ-crystallin quenched the protein fluorescence and enhanced the fluorescence of bound NADPH. Analysis of fluorescence quenching suggested high-affinity interaction between NADPH and ζ-crystallin with an apparent K m<0.45 μM. This value is at least an order of magnitude lower than that suggested by activity measurements. Analysis of NADPH fluorescence showed a biphasic curve representing fluorescence of free- and bound-NADPH. The intersection between free- and bound-NADPH closely paralleled the enzyme concentration, suggesting one mole of NADPH was bound per subunit of the enzyme. Phenanthrenequinone (PQ), the substrate of ζ-crystallin, also was able to quench the fluorescence of ζ-crystallin, albeit weaker than NADPH. Quantitative analysis suggested that ζ-crystallin had low affinity for PQ in the absence of NADPH, and PQ binding induced significant conformational changes in ζ-crystallin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call