Abstract

Local natural clay from Topkhana (Sulaimani district, Kurdistan region of Iraq) was characterized with XRD, XRF, FT-IR, and gas adsorption analyzer. The clay sample was dominated by saponite with minor amounts of chlorite. The clay was examined for its efficiency to adsorb and remove methylene blue (MB) from clinical laboratory wastewater by a batch method. The effects of pH, temperature, clay dosage, and initial MB concentration on the adsorption efficiency were investigated. The equilibrium experimental data were analyzed using Langmuir, Freundlich, Temkin, and Redlich-Peterson (R-P) isotherms. Most of the MB adsorption could be explained by cation exchange. The saponite, therefore, was the most important component in the clay. The rate of the adsorption process was found to follow pseudo-second-order kinetics. The conventional linear least squares method was compared with the more accurate method of non-linear curve fitting for the determination of isotherm and kinetic model parameters. Two error functions (the sum of the squared residuals and the correlation of determination) were used to evaluate the linear and non-linear regression analysis applied to the experimental data. Equilibrium thermodynamic parameters indicated a spontaneous and endothermic adsorption process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.