Abstract
Abstract Background Drought can exert a profound influence on soil nutrient availability, and understanding whether and how tree species adapt to this change is a critical priority for predicting the consequence of climate change on forest structure and function. The objective of this study was to examine the adaptability of Mongolian pine (Pinus sylvestris var. mongolica) to drought-induced changes in soil nutrient availability from the perspective of root functions. Methods We conducted a 7-year precipitation manipulation experiment with three levels of throughfall reduction (0%, 30%, and 50%) to simulate different drought intensities. We measured soil physicochemical properties and fine-root nutrient concentrations and biomass, and calculated the stoichiometric homeostatic regulation coefficient (1/H) of fine roots. Results Drought reduced soil organic carbon (C), nitrogen (N), phosphorous (P) and inorganic N concentrations, as well as ratios of total N to total P, and available N to available P in the 0–20 cm soil layer. In contrast, drought had no significant effect on fine-root N and P concentrations, and fine-root biomass in the 0–40 cm soil layer. Fine roots displayed high homeostatic regulation coefficients of N (with 1/H values of 0.19 and 0) and P (with 1/H values of 0.33 and 0) concentrations in 0–20 and 20–40 cm soil layers, respectively. Conclusions Our results indicate that drought leads to soil nutrient deficiency and the decoupling between N and P cycling, and provide evidence that Mongolian pine has high adaptability to drought-induced decrease in soil nutrient availability by maintaining great fine-root biomass to ensure sufficient nutrient uptake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.