Abstract
This manuscript describes a kind of bifunctional organocatalyst with unprecedented reactivity for the synthesis of polyethers via ring-opening polymerization (ROP) of epoxides under mild conditions. The bifunctional catalyst incorporates two 9-borabicyclo[3.3.1]nonane centers on the two ends as Lewis acidic sites for epoxide activation and a quaternary ammonium halide in the middle as the initiating site. The catalyst could be easily prepared in two steps from commercially available stocks on up to kilogram scale with ≈100 % yield. The organoboron catalyst mediated ROP of epoxides displays living behavior with low catalyst loading (5 ppm) and enables the synthesis of polyethers with molecular weights of over a million grams per mole (>106 g mol-1 ). Based on the investigations on crystal structure of catalyst, MALDI-TOF, and 11 B NMR spectroscopy, an intramolecular ammonium cation assisted SN 2 mechanism is proposed and verified by DFT calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.