Abstract

Considering the high costs of producing catalysts, designing a bifunctional catalyst is one of the favorable ways through which the best result can be achieved with less effort. Herein, we use a one-step calcination method to obtain a bifunctional catalyst Ni2P/NF for the simultaneous oxidation of benzyl alcohol (BA) and reduction of water. A series of electrochemical tests have shown that this catalyst has a low catalytic voltage, long-term stability and high conversion rates. The theoretical calculation unveils the essential reason for its excellent activity. The synergistic effect of Ni and P optimizes the adsorption and desorption energy of the intermediate species, thus reducing the energy barrier of the rate-determining step during BA electrooxidation. Thus, this work has laid the foundation for designing a highly efficient bifunctional electrocatalyst for BA oxidation and the hydrogen revolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.