Abstract
Marine fouling poses significant challenges to the efficiency and longevity of marine engineering equipment. To address this issue, developing effective marine antifouling coatings is critical to ensure the economic viability, environmental sustainability, and safety of offshore operations. In this study, we developed an innovative green antifouling and wear-resistant coating based on lignin, a renewable and sustainable resource. Lignin is considered environmentally friendly because it is abundant, biodegradable, and reduces reliance on petroleum-based materials. The coating was formulated with a controlled hydrophilic-to-hydrophobic ratio of 2:8, leveraging lignin's unique properties. Applying lignin increased the water contact angle by 14.5 %, improving surface hydrophobicity and contributing to the coating's antifouling efficacy. Moreover, the mechanical strength of the coating was enhanced by approximately 200 %, significantly boosting its durability in harsh marine environments. Additionally, the friction coefficient was reduced by about 85 %, further preventing organism adhesion. These results demonstrate that lignin-based coatings offer a greener alternative to traditional antifouling solutions. The results of this study not only help advance antifouling coating technology but are also consistent with the broader goal of promoting environmental responsibility in marine engineering practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.