Abstract
Rebar corrosion is one of the most critical mechanisms causing structural deterioration in reinforced concrete structures. However, rebar corrosion assessment is difficult in that typical non-destructive testing methods have limitations in accurately detecting rebar positioning in concrete. This study presents high-accuracy rebar position detection using a deep learning–based electrical resistance tomography (ERT) technique. Two data sets were prepared as input data: (1) the original circular ERT images in a Cartesian coordinate system and (2) the transformed rectangular ERT images in a polar coordinate system. The proposed convolutional neural network (CNN) model successfully distinguished rebar position from ERT images. Most of the radial and angular positions of the rebar were accurately identified by the model, despite rebar's wide distribution of high conductivity in the raw ERT images. Notably, the detection performance clearly depended on the coordinate types in the ERT images, whether they were Cartesian or polar coordinates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.