Abstract
In this paper, we have calculated the band structure of strained quantum well (QW) semiconductor optical amplifiers (SOAs) by using plane wave expansion method (PWEM) and finite difference method (FDM), respectively. The difference between these two numerical methods is presented. First, the solution of Schrodinger’s equation in a conduction band for parabolic potential well is used to check the validity and accuracy of these two numerical methods. For the PWEM, its stability and computational speed are investigated as a function of the number of plane waves and the period of QW. For FDM, effects of mesh size and QW width on its accuracy and calculation time are discussed. Finally, we find that the computational speed of FDM generally is faster than that of PWEM. However, the PWEM is more efficient than the FDM when wider SOAs are needed to be calculated. Therefore, to obtain high accuracy and efficient numerical solutions for band structures, numerical methods should be selected depending on required accuracy, device structure and further applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.