Abstract

In our previous report we suggested a new analytical tool, high accuracy NMR chemical shift corrected for bulk magnetization as a supplementary tool to study structural transitions and droplet size and shape of dilutable microemulsions. The aim of this study was to show the generality of this technique and to demonstrate that in almost any type of microemulsion this technique provides additional valuable structural information. The analysis made by the technique adds to the elucidation of some structural aspects that could not be clearly determined by other classical techniques.Therefore, in this part we are extending the study to three additional systems differing in the type of oil phase (toluene and cyclohexane), the nature of the surfactants (anionic and nonionic), and other microemulsion characteristics.We studied sodium dodecyl sulfate (SDS)-based anionic microemulsions with different oils and a nonionic microemulsion based on Tween 20 as the surfactant and toluene as the oil phase. All the microemulsions were fully dilutable with water.We found that the change in the slope of chemical shift against dilution reflects phase transition points of the microemulsion (O/W, bicontinuous, W/O). Chemical shift changes were clearly observed with the transition between spherical and non-spherical (wormlike, etc.) droplet shapes. We compared the interaction of cyclohexane and toluene and used the anisotropic effect of toluene’s ring current to determine its preferred orientation relative to SDS.Chemical shifts of the microemulsion components are therefore a useful addition to the arsenal of techniques for characterizing microemulsions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call