Abstract
Accurate identification and classification of bone marrow (BM) nucleated cell morphology are crucial for the diagnosis of hematological diseases. However, the subjective and time-consuming nature of manual identification by pathologists hinders prompt diagnosis and patient treatment. To address this issue, we developed Morphogo, a convolutional neural network-based system for morphological examination. Morphogo was trained using a vast dataset of over 2.8 million BM nucleated cell images. Its performance was evaluated using 508 BM cases that were categorized into five groups based on the degree of morphological abnormalities, comprising a total of 385,207 BM nucleated cells. The results demonstrated Morphogo’s ability to identify over 25 different types of BM nucleated cells, achieving a sensitivity of 80.95%, specificity of 99.48%, positive predictive value of 76.49%, negative predictive value of 99.44%, and an overall accuracy of 99.01%. In most groups, Morphogo cell analysis and Pathologists' proofreading showed high intragroup correlation coefficients for granulocytes, erythrocytes, lymphocytes, monocytes, and plasma cells. These findings further validate the practical applicability of the Morphogo system in clinical practice and emphasize its value in assisting pathologists in diagnosing blood disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.