Abstract

Terrorism has become a worldwide plague with severe consequences for the development of nations. Besides killing innocent people daily and preventing educational activities from taking place, terrorism is also hindering economic growth. Machine Learning (ML) and Natural Language Processing (NLP) can contribute to fighting terrorism by predicting in real-time future terrorist attacks if accurate data is available. This paper is part of a research project that uses text from social networks to extract necessary information to build an adequate dataset for terrorist attack prediction. We collected a set of 3000 social network texts about terrorism in Burkina Faso and used a subset to experiment with existing NLP solutions. The experiment reveals that existing solutions have poor accuracy for location recognition, which our solution resolves. We will extend the solution to extract dates and action information to achieve the project's goal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.