Abstract
In this paper, we provide a novel methodology for high-precision positioning that utilizes 1-bit additional information, which applies to various positioning techniques. The proposed approach leverages binary information to indicate if a user is within a specified space of interest and refines the estimated location information outside this area. By matching the estimated locations outside the area of interest with the valid location information within, this methodology corrects the positional data obtained through any arbitrary positioning technique, aligning the estimated positions with the intended spatial boundaries. Performance analysis metrics, such as Average Positioning Error (APE) and Cumulative Distribution Function for positioning coverage, were employed to assess the effectiveness of the proposed methods. Numerical simulations demonstrate how the proposed method enhances the averaged positioning accuracy, significantly outperforming the conventional time of arrival method. Furthermore, the proposed positioning correction methodology demonstrates validated feasibility applicable to an arbitrary existing positioning method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.