Abstract

Computer simulation of focused ion beams for surface analysis of materials by SIMS, or for microfabrication by ion beam lithography plays an important role in the design of low energy ion beam transport and optical systems. Many computer packages currently available, are limited in their applications, being inaccurate or inappropriate for a number of practical purposes. This work describes an efficient and accurate computer programme which has been developed and tested for use on medium sized machines. The programme is written in Algol 68 and models the behaviour of a beam of charged particles through an electrostatic system. A variable grid finite difference method is used with a unique data structure, to calculate the eletric potential in an axially symmetric region, for arbitrary shaped boundaries. Emphasis has been placed upon finding an economic method of solving the resulting set of sparse linear equations in the calculation of the electric field and several of these are described. Applications include individual ion lenses, extraction optics for ions in surface analytical instruments and the design of columns for ion beam lithography. Computational results have been compared with analytical calculations and with some data obtained from individual einzel lenses by Harting and Read ( Electrostatic Lenses, Elsevier, Amsterdam ( 1976)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call