Abstract

The fundamental astrometrical problem of high-accuracy interpolation of the trajectory of the Earth’s pole and construction of an adequate theoretical model for associated complex multifrequency oscillations are considered. Measurements of the Earth-rotation parameters demonstrate the possibility of adjusting the filtering algorithm to make it suitable for practical navigational applications associated with a need for reliable high-accuracy predictions over the required time scales (short-and medium-terms). Numerical simulations and tests of the procedure used to optimize the adjustment parameters are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.