Abstract

The propeller is the important component of the power system in ships, the blades of which are spatial curved structures with continually changing sections. Wire arc additive manufacture (WAAM) is a novel technology and an effective method for manufacturing propellers. Currently, the planar slicing methods cannot form the high-accuracy propellers with complex spatial curves, a new cylindrical surface slicing method, based on the principles of conformal slicing, is applied to WAAM, the section for slicing being a cylindrical surface coaxial with the hub. Both cylindrical circumferential filling and cylindrical axial filling are used for filling the blades. In the manufacturing process, the hub is firstly formed by plane slicing and offset filling, then the blade is formed piece by piece by cylindrical slice and cylindrical axial filling and cylindrical circumferential filling alternately. A non-contact 3D measuring is conducted with a surface structure light 3D scanner after the completion of printing, and a 3D comparison is made with Geomagic qualify software. The dimensional error of the product is within ± 1.6 mm. The mechanical properties of WAAM propeller components are higher than the casting ones with the same composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.