Abstract

Boundary conditions on an extra-dimensional interval can be chosen to break bulk gauge symmetries and to reduce the rank of the gauge group. We consider this mechanism in models with gauge trinification. We determine the boundary conditions necessary to break the trinified gauge group directly down to that of the standard model. Working in an effective theory for the gauge symmetry-breaking parameters on a boundary, we examine the limit in which the GUT-breaking sector is Higgsless and show how one may obtain the low-energy particle content of the minimal supersymmetric standard model. We find that gauge unification is preserved in this scenario, and that the differential gauge coupling running is logarithmic above the scale of compactification. We compare the phenomenology of our model to that of four-dimensional trinified theories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call