Abstract

Polarized inelastic neutron scattering experiments recently identified the amplitude (Higgs) mode in C_{9}H_{18}N_{2}CuBr_{4}, a two-dimensional near-quantum-critical spin-1/2 two-leg ladder compound, which exhibits a weak easy-axis exchange anisotropy. Here, we theoretically examine the dynamic spin structure factor of such planar coupled spin-ladder systems using large-scale quantum MonteCarlo simulations. This allows us to provide a quantitative account of the experimental neutron scattering data within a consistent quantum spin model. Moreover, we trace the details of the continuous evolution of the amplitude mode from a two-particle bound state of coupled ladders in the classical Ising limit all the way to the quantum spin-1/2 Heisenberg limit with fully restored SU(2) symmetry, where it gets overdamped by the two-magnon continuum in neutron scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call