Abstract
Higgs-like modes in condensed-matter physics have drawn attention because of analogies to the Higgs bosons of particle physics. Here we use a microscopic time-dependent mean-field theory to study the collective mode spectra of two-dimensional spatially indirect exciton (electron-hole pair) condensates, focusing on the Higgs-like modes, i.e., those that have a large weight in electron-hole pair amplitude response functions. We find that in the low exciton density (Bose-Einstein condensate) limit, the dominant Higgs-like modes of spatially indirect exciton condensates correspond to adding electron-hole pairs that are orthogonal to the condensed pair state. We comment on the previously studied Higgs-like collective excitations of superconductors in light of this finding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.