Abstract

We compare Higgs inflation in the metric and Palatini formulations of general relativity, with loop corrections treated in a simple approximation. We consider Higgs inflation on the plateau, at a critical point, at a hilltop and in a false vacuum. In the last case there are only minor differences. Otherwise we find that in the Palatini formulation the tensor-to-scalar ratio is consistently suppressed, spanning the range 1×10−13<r<7×10−5, compared to the metric case result 2×10−5<r<0.2. Even when the values of ns and r overlap, the running and running of the running are different in the two formulations. Therefore, if Higgs is the inflaton, inflationary observables can be used to distinguish between different gravitational degrees of freedom, in this case to determine whether the connection is an independent variable. Non-detection of r in foreseeable future observations would not rule out Higgs inflation, only its metric variant. We conclude that in order to fix the theory of Higgs inflation, not only the particle physics UV completion but also the gravitational degrees of freedom have to be explicated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call