Abstract

We propose HifiHead, a high fidelity neural talking head synthesis method, which can well preserve the source image's appearance and control the motion (e.g., pose, expression, gaze) flexibly with 3D morphable face models (3DMMs) parameters derived from a driving image or indicated by users. Existing head synthesis works mainly focus on low-resolution inputs. Instead, we exploit the powerful generative prior embedded in StyleGAN to achieve high-quality head synthesis and editing. Specifically, we first extract the source image's appearance and driving image's motion to construct 3D face descriptors, which are employed as latent style codes for the generator. Meanwhile, hierarchical representations are extracted from the source and rendered 3D images respectively to provide faithful appearance and shape guidance. Considering the appearance representations need high-resolution flow fields for spatial transform, we propose a coarse-to-fine style-based generator consisting of a series of feature alignment and refinement (FAR) blocks. Each FAR block updates the dense flow fields and refines RGB outputs simultaneously for efficiency. Extensive experiments show that our method blends source appearance and target motion more accurately along with more photo-realistic results than previous state-of-the-art approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.