Abstract

Approximately 50% of cancer patients receive radiation treatment, either alone or in combination with other therapies. Tumor hypoxia has long been associated with resistance to radiation therapy. Moreover, the expression of hypoxia inducible factors HIF1alpha and/or HIF2alpha correlates with poor prognosis in many tumors. Recent evidence indicates that HIF1alpha expression can enhance radiation-induced apoptosis in cancer cells. We demonstrate here that HIF2alpha inhibition promotes tumor cell death and, in contrast to HIF1alpha, enhances the response to radiation treatment. Specifically, inhibiting HIF2alpha expression augments p53 activity, increases apoptosis, and reduces clonogenic survival of irradiated and non-irradiated cells. Moreover, HIF2alpha inhibition promotes p53-mediated responses by disrupting cellular redox homeostasis, thereby permitting reactive oxygen species (ROS) accumulation and DNA damage. These results correlate with altered p53 phosphorylation and target gene expression in untreated human tumor samples and show that HIF2alpha likely contributes to tumor cell survival including during radiation therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.