Abstract
BackgroundIn recent years, many studies have confirmed that hypoxia and hypoxia inducible factor (HIF)-1α drive the development of colorectal cancer (CRC). HIF-1α also modulates epitranscriptomic remodeling to regulate cancer development. However, the mechanism by which RNA methylation is altered under hypoxic conditions and the underlying regulatory mechanisms in CRC remain unclear. MethodsHere, seven common types of modifications of mRNA and tRNA were quantitated using liquid chromatography-tandem mass spectrometry. To validate the robustness of the profiling data, modifications that were consistently altered across the three CRC cell lines under hypoxia were validated via dot blot analysis. Then, 10 enzymes that could regulate the abundance of three RNA modifications in tRNA were measured in CRC cells after hypoxia treatment using quantitative real-time polymerase chain reaction. Furthermore, the regulatory role of HIF-1α in the expression of methyltransferase 1 (METTL1) under hypoxic conditions was confirmed using METTL1 promoter activity assays and HIF-1α small interfering RNA (siRNA). The binding capacity of HIF-1α to each hypoxia response element (HRE) in the promoter of METTL1 was investigated by performing Chromatin immunoprecipitation assay (ChIP). ResultsAbundance of RNA modifications was altered more consistently and significantly in tRNA than in mRNA under hypoxic conditions. In addition, the abundance of N7-methyleguanosine (m7G) modification in tRNA decreased significantly under hypoxic conditions. As a methyltransferase of the m7G modification in tRNA, the expression of METTL1 mRNA was drastically downregulated under hypoxic conditions. Mechanistically, suppression of HIF-1α by siRNA upregulated the METTL1 promoter activity. Furthermore, ChIP showed that HIF-1α could bind with an HRE in the promoter region of METTL1, indicating that METTL1 is a direct target of HIF-1α in CRC cells under hypoxic conditions. ConclusionsOur study revealed that the abundance of the m7G modification in tRNA was drastically reduced in CRC cells dependent on the HIF-1α-mediated inhibition of METTL1 transcription under hypoxic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and biophysical research communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.