Abstract

Treatment with iron chelators mimics hypoxic induction of the hypoxia inducible factor (HIF-1) which activates transcription by binding to hypoxia responsive elements (HRE). We investigated whether HIF-1 is involved in transcriptional activation of the transferrin receptor (TfR), a membrane protein which mediates cellular iron uptake, in response to iron deprivation. The transcription rate of the TfR gene in isolated nuclei was up-regulated by treatment of Hep3B human hepatoma cells with the iron chelator desferrioxamine (DFO). The role of HIF-1 in the activation of TfR was indicated by the following observations: (i) DFO-dependent activation of a luciferase reporter gene in transfected Hep3B cells was mediated by a fragment of the human TfR promoter containing a putative HRE sequence; (ii) mutation of this sequence prevented stimulation of luciferase activity; (iii) binding to this sequence of HIF-1alpha, identified by competition experiments and supershift assays, was induced by DFO. Furthermore, in mouse hepatoma cells unable to assemble functional HIF-1, inducibility of TfR transcription by DFO was lost and TfR mRNA up-regulation was reduced. These results, which show the role of HIF-1 in the control of TfR gene expression in conditions of iron depletion, give insights into the mechanisms of transcriptional regulation which concur with the well-characterized post-transcriptional control of TfR expression to expand the extent of response to iron deficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.