Abstract

Purpose: To elucidate the relation between fracture healing and angiogenesis, we checked expression of Hypoxia-inducible factor (HIF) and Vascular endothelial growth factor (VEGF) in hypoxic cell cultures and the callus from a rat femur fracture model. Materials and Methods: Human osteoblasts, chondrocytes, and rat ST2 cells were cultured in DME/F12 media with 10% FBS. Hypoxic DME/F12 media (PO2<60 mmHg) was generated by bubbling with 95% N2 and 5% CO2 and added to cells. After 2, 6, and 24 hours, RNA and proteins were collected for reverse transcription - polymerase chain reaction (RT-PCR) and Western blot. In addition, immunocytochemistry and siRNA treatment for HIF-1α were performed. Next, femurs from 9-week SD rats were fractured after fixation with needles. The rats were sacrificed at post-fracture day (PFD) 3, 5, 7, 10, 14, 21 and calluses were collected for RT-PCR and Western blot. Results: HIF-1α and HIF-2α expression were not increased in RT-PCR but protein levels were increased. VEGF expression in RT-PCR was increased. Treatment with siRNA directed towards HIF inhibited VEGF expression. In the rat fracture callus, HIF-1α and VEGF expression peaked between PFD 5 and 7 and decreased after PFD 10. In contrast to cell culture, mRNA expression of HIF-1α was increased at PFD 7. Conclusion: HIF-1α and VEGF peaked early in fracture healing. With expression decreasing as O2 tension increased. Further study is needed to identify other factors affecting chondrogenic differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.