Abstract

The general consensus is that immune cells are exposed to physiological hypoxia in vivo (PhyO2, 2-5% P(O2)). However, functional studies of B cells in hypoxic conditions are sparse. Recently, we reported the expression in mouse B cells of TASK-2, a member of pH-sensitive two-pore domain K(+) channels with background activity. In this study, we investigated the response of K(+) channels to sustained PhyO2 (sustained hypoxia [SH], 3% P(O2) for 24 h) in WEHI-231 mouse B cells. SH induced voltage-independent background K(+) conductance (SH-K(bg)) and hyperpolarized the membrane potential. The pH sensitivity and the single-channel conductance of SH-K(bg) were consistent with those of TASK-2. Immunoblotting assay results showed that SH significantly increased plasma membrane expressions of TASK-2. Conversely, SH failed to induce any current following small interfering (si)TASK-2 transfection. Similar hypoxic upregulation of TASK-2 was also observed in splenic primary B cells. Mechanistically, upregulation of TASK-2 by SH was prevented by si hypoxia-inducible factor-1α (HIF-1α) transfection or by YC-1, a pharmacological HIF-1α inhibitor. In addition, TASK-2 current was increased in WEHI-231 cells overexpressed with O2-resistant HIF-1α. Importantly, [Ca(2+)]c increment in response to BCR stimulation was significantly higher in SH-exposed B cells, which was abolished by high K(+)-induced depolarization or by siTASK-2 transfection. The data demonstrate that TASK-2 is upregulated under hypoxia via HIF-1α-dependent manner in B cells. This is functionally important in maintaining the negative membrane potential and providing electrical driving force to control Ca(2+) influx.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call