Abstract

Osteocytes are terminally differentiated cells derived from osteoblasts and are deeply embedded within the bone matrix. They play a critical role in bone remodeling by generating a lacuno-canalicular network (LCN) and controlling the transport of nutrients. Due to the absence of blood vessels within the bone matrix, it is widely believed that osteocytes develop in a hypoxic environment. However, the mechanisms of osteocytogenesis and the role of oxygen sensing in this process remain unclear. Hypoxia-inducible factors (HIFs) are major transcriptional factors involved in oxygen sensing. Previous studies have shown that accumulation of HIFs in osteoblasts leads to abnormal bone remodeling, potentially linked with the alterations of the LCN network. Specifically, HIF-1α is hypothesized to play a more significant role in regulating bone remodeling compared to HIF-2α. Therefore, we investigated the functions of HIF-1α in dendrite formation and the establishment of the LCN network during osteocytogenesis. Immunostaining and scanning electron microscopy revealed that the E11 protein aggregates to form a ring structure that defines the site for dendrite initiation. This process is followed by activation of the ERM/RhoA pathway and recruitment of matrix metalloproteinase 14 (MMP14) to facilitate extracellular matrix degradation, enabling dendrite elongation. However, both hypoxic treatment and overexpression of HIF-1α impair ring formation, resulting in reduced ERM/RhoA activity and decreased matrix degradation capability. These findings suggest that abnormal HIF-1α activity in local areas could contribute to impaired LCN network formation and abnormal bone remodeling observed in bone diseases such as osteopenia and aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.