Abstract

In the hierarchical model of soil aggregate formation proposed by Tisdall and Oades (1982), a major mechanism involved in the binding of microaggregates into macroaggregates is physical entanglement by roots and mycorrhizal fungus hyphae. Using data collected from soils of a chronosequence of tallgrass prairie restorations and an adjacent prairie soil cultivated to row crops for at least 100 yr. it was found that root lengths by diameter size class, the lengths of roots colonized by mycorrhizal fungi within each root-size class, and extraradical hyphal lengths of mycorrhizal fungi were all highly correlated with the geometric mean diameter (GMD) of water-stable soil aggregates. To better understand the relative contributions of roots and mycorrhizal fungi to water-stable aggregation, a conceptual model emphasizing the interrelationships between roots of differing size classes, mycorrhizal fungi and aggregate-size distribution was developed and evaluated using path analysis. From path analysis, it was found that extraradical hyphal length followed by fine (0.2–1 mm dia) root length had the strongest direct effects on GMD. It was expected that a physical entanglement mechanism would involve the very finest roots; however, the direct path between very-fine (<0.2 mm dia) root length and GMD was not significant. Although both root-size classes exhibited significant indirect effects on GMD via the relationships between their colonized lengths and xtraradical hyphal length, the overall effect of fine root length on GMD was much stronger than the effect of very-fine root length. To determine the relative influences of plant lifeforms on root morphology and estimate the effects of various lifeforms on GMD, data on aboveground standing crops associated with the root and fungus data were added to the path model. Prairie grasses were associated with both fine and very-line root lengths and exhibited the strongest effects on GMD; whereas, non-prairie grasses were most strongly associated with very-fine root length and only weakly affected GMD. Perennial species of Compositae were associated with line root length and also had a fairly strong influence on GMD. This study supports the conceptual model developed by Tisdall and Oades and suggests that a better understanding of soil aggregate development may be achieved by considering the interactions between roots and mycorrhizal fungi in relationship to plant community composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call