Abstract
Most states of the fractional quantum Hall effect may be interpreted in terms of an integral quantum Hall effect of weakly-interacting quasiparticles (composite fermions). The recently discovered 4 11 state does not belong to these states because its formation is due to the residual interactions between composite fermions, which become relevant when the composite-fermion levels are only partially filled. We have derived a model of interacting composite fermions, which reveals the self-similarity of the fractional quantum Hall effect and which allows for a systematic study of higher generations of composite fermions. Here, we derive the form of the interaction potential between these hierarchical composite fermions and provide some stability criteria for such states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.